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ABSTRACT

This report deals with the problem of computer perception in an

indoor laboratory environment containing rocks of various sizes. The

sensory data processing is required for the NASA/JPL breadboard mobile

robot that is a test system for an adaptive variably-autonomous vehicle that

will conduct scientific explorations on the surface of Mars. Scene analysis

is discussed in terms of object segmentation followed by feature extraction,

which results in a representation of the scene in the robot's world model.
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I. INTRODUCTION

Research in computer perception aimed at satisfying the needs of a

simulated NASA/JPL Mars robot is concerned with two main problems. One

arises out of the requirement that a breadboard version of a mobile robot

be constructed and experimented with in a laboratory, while the second deals

with the test vehicle in an outdoor environment. The primary emphasis of

the work until now has been on the first problem, although not to the com-

plete exclusion of the second (Ref. 1). Reference 1 describes a procedure

for obtaining, by means of stereoscopic vision, the depth maps required by

the robot for both indoor and outdoor environments.

The robot, shown in Fig. 1, will exhibit an adaptive variably-

autonomous behavior and is aimed at conducting scientific explorations of

the surface of Mars. Such a vehicle is required both to cope with the long

communication delays between Earth and Mars, and to enhance scientific

yield with respect to flight cost. The two primary modes of operation of

the robot are navigation and manipulation. The former must address itself

to the problem of scene analysis in a dynamic situation, the main objective

being to avoid obstacles during a traverse. From a visual point of view,

manipulation is concerned with detecting interesting samples and evaluating

their shape. A detailed discussion of the robot is beyond the scope of this

report, but some discussion related to it is available elsewhere (Refs. 2,

3, 4, and 5).

The navigation and manipulation modes of operation are also the con-

cern of the robot in the laboratory environment. We shall further assume

that both obstacles and samples are rocks and are distinguishable only by

JPL Technical Memorandum 33-645



their size, the large ones being obstacles and the small ones samples. We

note that on the surface of Mars other obstacles such as steep cliffs, rock

fields, and soft sand dunes will exist. Also interesting samples may be

characterized by their texture and color pattern in addition.to size. Figure 2

is an outdoor scene of rocks lying on a sidewalk exhibiting a complexity and

image contrast that one would expect for the manipulative task. Ultimately,
the robot laboratory is planned to have uniformly painted walls, floor, and

ceiling, and to contain high-contrast rocks, thus greatly simplifying the

scene analysis. However, in our tests we used the more complex picture

shown in Fig. 3, which is an indoor laboratory scene of generally low

contrast containing a large variety of rocks, both in size and albedo. This

has allowed us to experiment with our segmentation methods, in particular

to determine their strengths and weaknesses. The general scenario might

be typical of what the robot could expect during the navigation phase. These

two scenes should be contrasted with Figs. 4, 5, and 6, which were taken

in the California desert and give a more realistic indication of what the

Martian scene analysis problem will entail. We categorically state that the

approach discussed in this paper is applicable to the indoor environment

only and is not extensible to outdoor scenes! Indeed a completely different

and more powerful approach is necessary for the latter, and this will be

discussed briefly in Section IV.

The visual input for the robot is comprised of dual parallel television
cameras, which are of the silicon vidicon type. A sequential column

digitizer has been constructed for the pair and acts as the interface to the
computer. Controlled pan and tilt will also be made available. Binocular

input data is required for depth perception as described in Ref. 1, but the
right camera, R, will henceforth be considered as the reference image

input.

The objective of the scene analysis system is to interpret the three-
dimensional environment as input by the stereo image digitizers and laser
range finder, to output a suitable representation to the world model accord-
ing to the process shown in Fig. 7. The world model of the robot acts as
the depository of all sensory information. It also contains the complete
status of the robot system and plays the role of a switchboard for information
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that it routes to the appropriate subsystems. If additional data is called

for by one of these subsystems, the world model can task the scene analysis

program to achieve the appropriate goal.

The world model may be considered to be comprised of two major

components. The first is referred to as a model of assertions or generic

model because it represents in terms of a relational graph our postulations

concerning the scenes of interest. In nearly all scene analysis programs

to date, this model is merely implicit in the design and development process.

However, there is an increasing feeling that this model should be explicitly

defined and incorporated as a semantic memory and this is the approach

taken with the NASA/JPL robot. 1 The second component is the so-called

model of assignments, which essentially is a description, in terms of a

graph, of the scene presently under consideration by the robot. Obviously

all assignments are made in terms of the generic model. The work of

Winston (Ref. 6) on the learning of structural descriptions is of interest in

this regard. The model of assertions for the indoor laboratory scenes such

as Fig. 3 is shown in Fig. 8. We may distinguish two categories of infor-

mation plus the robot in this model: the rocks that are the data, and the

walls and ceiling that constitute the background. Compared with this simple

situation, Fig. 9 shows a relational graph for outdoor environments of the

kind shown in Figs. 4, 5, and 6. Considerable research is required to

complete and supply the missing details in this graph.

The scene analysis or computer perception program may be frag-

mented into three distinct steps. The first entails the process of image

segmentation, which is concerned with the problem of isolating as entities

the object subsets in the image. This classification of the points of an image

into background and data point sets is the precursor to the ensuing feature

analysis of the objects in the scene. The problem of segmentation in the

indoor environment is discussed in Section II. The second step relates to

the perception of the depth of each point in the object set, and this has been

1Udupa, S. M., private communication in the form of the unpublished
report, Data Structure and World Model. California Institute of Technology,
Pasadena, Calif., January 26, 1973.
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discussed in detail by Levine, et al. (Ref. 1). Finally, Section III is

concerned with step three: the object description using both the depth

and segmented image data.

II. OBJECT SEGMENTATION

The process of image digitization is followed by its segmentation into

objects that might be either obstacles or samples. No a priori assumptions

can be made regarding the number, size, location, or shape of the rocks

in the scene. It is only known that they may be found on the floor of the

laboratory in a random position.

Let the actual three-dimensional scene perceived by a human be

denoted by S and let R denote the digitized two-dimensional image of S as

observed by the right camera of the stereo pair mounted on the robot. We

further let R be a picture function defined on an M X N grid 11 that constitutes

the raster scanned by the digitizing hardware. 2 The set H consists of

picture elements rr located at the coordinates (a, y) where 1 : a _ M and

1 s y 5 N define the coordinates of any particular image point. The lower

left-hand point in any image will be referenced as (a, y) = (0, 0) and

processing will proceed row by row from left to right (y = 1 to y = 1000)

and bottom to top (a = 1 to a = 1000). The optical density or gray level is

given by R(y, a) and can take on any integer value in the set (1, ... , 256).

In all cases we have obtained R(a, y) by digitizing a photograph.

The segmentation problem can now be stated as follows: given R(a, y),

classify each point rr(a, y)EH as either belonging to the set B of background

points or the set D of data points. We then define objects 4. as subsets of1

the points in the set D that are connected according to the property of four-

connectivity (Ref. 7). The set of all segmented objects in the image R is

given by O = (Wl,' ' *, ). The feature analysis of the isolated objects

'Ii in O that represent the rocks in the scene S as seen by the robot will be

discussed in the next section.

The procedure by which the set I = (B, D) is segmented will be

referred to as adaptive histogram analysis. This is because the gray-level

2 In our case M = N = 1000.
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thresholds that are used to classify a given point into either B or D are

determined by an analysis of the local histogram. To avoid the problems

associated with constructing a histogram with an inadequate number of

samples, each histogram was smoothed with a nine-point filter with weights

(1, 2, 3, 4, 5, 4, 3, 2, 1) centered at 5. The segmentation technique is

sensitive to the degree of smoothing since too little smoothing yields many

local peaks in the histogram, while a large amount eliminates many of

them. Experimentation with the type of images under study is required to

determine the scope of the filter.

Suppose that we make the assumption that the background is uniformly

shaded. Lighting conditions will of course result in variations in the scene

and it is for this reason that a local analysis is required. Further we shall

assume that the background is represented in the picture histogram by a

Gaussian distribution function or the major part of such a distribution. In

actuality this function will be corrupted by the effect of objects in the picture.

Let [B and TB define the background mean and standard deviation, respec-

tively, as shown in Fig. 10. Let r B be the full-width at half-maximum,

the so called half-width. Then it can be shown that

rB = 2.354 TB

Given that the peak of the distribution has been obtained by search, F B and

thence 2a B can easily be computed. Thresholds T L = -2c" B and T R = 2c B

can be arbitrarily set to isolate and erase those points in the image that

are part of the background. We shall refer to this as the two-sigma

assumption.

Let the grid II be subdivided into m X n submatrices for which a local

histogram may be calculated. 3 It is desirable to detect that peak in the

histogram that is attributable to the background. In general, however,.

there will exist one peak or more. We ensure that the background peak is

3In our case m = n = 16 resulting in the picture containing 256 submatrices.

It is in this sense that we use the term local.
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the one found by constraining the one-dimensional search to a range

predicated on the location of the peaks already detected. Linear interpolation

for the B s using the matched filter shown in Fig. ll(a) is used to predict

the probable location of the peak. The ensuing one-dimensional search of

the histogram is restricted to plus or minus 6 from this predicted gray-

level value. In our case 6 = 16 was found to be optimum. Given that AB has

been found, then the two-sigma assumption is invoked to calculate the

thresholds T L and T R . If no background peak is found we may deduce that

it is masked by the data peak or that the image contains only data in this

neighborhood. In this circumstance, the thresholds for the submatrix

centered at the point (C, y) under consideration are estimated by averaging

the values of the pertinent thresholds of the four closest neighboring sub-

matrices using the matched filters shown in Fig. 11l(b).

The situation may occur in which we cannot calculate FB because of

adjoining peaks that eliminate the point of half-maximum. The three

possible cases are shown in Fig. 12. For any given side of the background

distribution, if this situation occurs, the threshold is placed half-way

between iB and the adjoining peak. Thus in Fig. 12, (a) and (b) the two-

sigma assumption is valid only for one side of the background distribution,

while in Fig. 12(c) it is invalid for both sides.

Although TL and TR are only computed from the actual histograms

for the 256 submatrices, we do estimate their value for each element in the

set H. This estimation is carried out, after the complete image matrix

has been processed, by means of linear interpolation among the computed

thresholds. We note that for any background probability distribution, the

points in the submatrix that contribute to its tails are most likely located

on the extremities of the region delineated by the given submatrix. Large

variations in background shading would presumably cause a large standard

deviation 0 B. Therefore it would be expected that the two-sigma assumption

would yield the best results for points near the center of the region. By

estimating T L and T R for the other points in this region we are essentially

tracking the changes in ±B and thus contributing to a more accurate

segmentation.
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Figure 13 shows the segmented image of the sidewalk scene in

Fig. 2. The two-sigma assumption was used to determine the thresholds

for the background and only the set D is displayed. Small particles less

than a certain perimeter are then erased and the result is shown in Fig. 14.

The objects ~i,P where the label i is shown next to the rock, are seen to

be well isolated. The result of this processing is therefore the set of

objects O =  (~1l' 2 ' "' 13 )

In comparison to the high contrast sidewalk scene, the low contrast

indoor laboratory scene shown in Fig. 3 is much more problematical. This

scene was illuminated by two floodlamps, resulting in certain areas on the

floor with shadows cast by either lamp or a combination of the two. Because

of the existence of the three types of shadows it was not possible to track

their peaks in the histogram with any confidence. However, given better

pictures, it would seem to be within the realm of possibility to predict which

peak belonged to the shadow, which to the background per se, and thus to

isolate the objects. Certain semantic information could be brought to bear

such as that the shadows' peak must be darker than the floor's (background)

peak. We also note in Fig. 3 that there is a tremendous variation in shading

on the rocks with parts of some of them barely visible. No effort was

addressed to the problem of detecting the drapes hanging on the two walls,

but it will be observed in the results that the bottom of the drapes could be

easily detected using a simple edge-detector.

Figures 15 and 16 show the segmented scene before and after,

respectively, the erasure of small insignificant objects. The existence of

two shadows is quite evident for object 3, while other objects such as 2 and

8 have only one shadow. Rocks 5 and 10 have been broken into more than

one part although the parts could be easily connected using a local operator.

A large part of rock 9 has been lost; however the object descriptor to be

discussed in the next section requires only the extremities of rocks and

would therefore be relatively insensitive to this type of loss. It is unclear

from the pictures whether the same holds true for rock 2. A significant

amount of experimentation has been carried out with the parameters asso-

ciated with the method, and any attempt to bring out greater portions of the

rock results in some of the background being assigned to the set D.
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Considering the poor quality of the image, the results are encouraging and

await a test on the higher contrast images that can be obtained with the

actual robot television cameras.

We have shown in this section that the adaptive histogram analysis,

as an approach to picture segmentation, yields good results when a

reasonably high contrast image is available. Even with considerable image

degradation and poor lighting, the performance of the technique is quite

adequate. The resulting set of objects Oin the picture is analyzed and

descriptors computed as discussed in the next section.

III. OBJECT DESCRIPTION

A. Point Transformation

The set O consists of subsets of points *I., each of which represents the1

set of points constituting a particular object, in our case a rock. The

problem to be discussed in this section deals with transforming a particular

point rr E P.i in the picture domain into an equivalent point in a global coordin-

ate system. That is, given a point in the picture on a rock, what are its

coordinates in the scene S?

The mapping of a point in a picture to a point in three-dimensional

space will be achieved by means of a perspective transformation with the

analysis and notation following quite closely the approach of Duda and

Hart (Ref. 8). The latter refer to this transformation as "the natural

first-order approximation to the process of taking a picture;" a detailed

discussion of the model used is presented in Ref. 8 and will not be repeated

here.

Let us consider a global rectangular coordinate system (x, y, z) in

which the object point p corresponding to the image point w is represented.

The origin of this coordinate system or base point is fixed by the robot world

model and used as a reference for all distance and location computations.

It is assumed that measuring devices affixed to the robot are capable of

computing the distance and direction of travel from the base point. In this

way, the gimbal center v = (x o , Yo, zo)t, which is the origin of the gimbal

frame for the stereo cameras, can be tracked in the global coordinate

system and is therefore assumed to be known.

8 JPL Technical Memorandum 33-645



In addition to the global system, we shall define the picture coordinate

system referenced as before to the right camera image, R, of the stereo

pair. Henceforth all references to picture points in the picture coordinate

system will carry this interpretation. Let the symbols

(Y)

denote the coordinates in the picture coordinate system of the point Tr.

We wish to show that given Tr in the picture coordinate system and the

corresponding retinal disparity, d, the coordinates of p in the global coor-

dinate system can be computed. It is assumed that the retinal disparity

for any point nr in the right image can be found using either the algorithm of

Levine, et al. (Ref. 1), which was concerned with the computation of a depth

map, and therefore the disparity, for the complete image array, or the laser

range finder. An example of the result of the stereoscopic processing

algorithm is shown in Fig. 17, where the computed depth contours are super-

imposed on the original reference image shown in Fig. 2. Obviously the

disparity need only be computed for points belonging to the set O and this

will be discussed in greater detail in the next section.

Figure 18 shows the physical situation for the stereoscopic TV input

scanners with the appropriate coordinate systems. It is assumed that both

cameras are panned through identical angles 0 measured counterclockwise

from the y axis, and tilted through identical angles C4, measured positive

in an upward direction. Both 0 and 4 measurements are assumed to be

always available to the computing system. There exists a constant offset

vector = 1 + f, f 3 )t, where f is the focal length between the camera

gimbal references and the origin of the image plane, and this offset is

assumed to be identical for both cameras. Figure 19 shows both the left

and right gimbal reference vectors v and yoR, respectively, as well as

the gimbal center. If we define A as the baseline vector, then it is easily

seen that the gimbal references are given by:

JPL Technical Memorandum 33-645 9



-oR -o +R

v = v +A
-o L  -- L

where A = AR - . Note that v  , v , and A are constants of the sys-

tem and are therefore assumed to be known.

We are now ready to state the result as derived in Ref. 8. The coor-

dinates (x, y, z) of the point p in the global coordinate system, given the

picture coordinates (a, 0, y) in the right image and the disparity, d, for

this point, are computed by:

p = y = - au + bou +A +k
2 0 RL OR L

z

where

c -k c -k-L -L -R -R
u u-L I c -k ' -R c - kL -k "

(a +d+ P1) cos e - (f+ 2 ) cos c sin e + (y+ 1 3 ) sin # sin e

C = v + (a + d + P1) sin e + (f + 1Z) cos 4 cos 0 - (y + 3 ) sin 4cos 0

(f + 12 ) sin + (y + P3 ) cos 4

(a+ 9) cos O - (f+ 2 ) cos 4 sin 0 + (y + ± 3 ) sin 4 sin 0

R = v + (a+ ~1 ) sin + (f + 1 2 ) cos 4 cos 0 - (y 3 ) sin 4 cos 0-- oR

(f + 2 ) sin 4 + (y + P3 ) cos 4
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£1 cos e - kZ cos 4 sin 0 + 13 sin P sin 0

k = Vo + sin 8 + + 2Cos Cos - 13 sin 0 cos 0

PZ sin 4 + 3 cos

PI cos 0 - PZ cos sin 8 + 3 sin sin

k = v + 1 sin e + P cos os - 3 sin p cos e

P2 sin + 1 3 cos

(u L  ) - (u L  u R )(uu )

ao1 - (L* RR 2

and

bo ( L U R)(UL .j (UR

1- (u L uR)

This computation is not as imposing as it might seem at first glance. First,

k L and k R need only be computed once during the analysis of a particular

image. Second, for a fixed y, that is for any row in the image, the vectors

c and c are related according toL -R

(o2 - ) + (da2 - dl)} cos

CL (a 2 ) L (al) + (a2 - al) + (d - d) sin e

0
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(a 2 - ai)} os e

CR(aZ)= CR(aC) + {(a - -)} sin 0

0

where a1 and a2 are the coordinates of two picture points within the same

image row.

In the next section we shall assume that the coordinates in the global

coordinate system of any point Tr in the picture coordinate system can be

computed as discussed above.

B. Feature Extraction

For the navigation and manipulation tasks proposed for the robot in

the indoor setting described in Section I, the rock descriptions may be kept

quite simple. Indeed we shall confine ourselves to a location and a shape

description. Thus each object i in the three-dimensional scene can be

represented by the following LEAP (Ref. 9) data structure: 4

NAME 0 ROCK - (i)

DESCRIPTION 0 ROCK - (LOCATION DESCRIPTOR,
SHAPE DESCRIPTOR)

The location descriptor is a single point in (x, y, z) space that approximates

the center of gravity (g) of the rock. We may describe the shape descriptor

as the minimum perceivable enclosing polygonal cylinder (MPEPC). Each

of these descriptions will now be discussed in detail.

It is important to realize that because of occlusion not all points on a

given rock may be perceivable at any one time, or for that matter at any

time. Nevertheless, an attempt is made to enclose each rock of interest

4 The basic form in LEAP is given by:
ATTRIBUTE 0 OBJECT = VALUE
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within a box with a polygonal cross section and height equal to the highest

observed point on the obstacle. Given all the information available concern-

ing the rock, this description turns out to be a conservative one. However,

it is wholly adequate for the purposes of navigation and manipulation in the

indoor laboratory environment. In the former we are concerned with plan-

ning a path and are interested only in avoiding obstacles with complete

certainty. In the other case, the tilt angle will be chosen sufficiently nega-

tive so that the complete surface cross section is visible by the camera.

Both of these conform to human practice.

Under certain circumstances a minimum perceivable enclosing

rectangular parallelepiped (MPERP) might be adequate thereby reducing

the computer storage requirements for the world model. Indeed the shape

descriptor procedure computes the MPERP for the objects in the scene at

each point in time. If the MPERP was previously computed for a particular

rock from a different vantage point, then these are combined to form the

MPEPC.

Let us first consider the MPERP as the shape descriptor and define
t

it by means of the five points pk = (Xk' Yk' zk) , where k = 2, 4, 6, 8

(as shown in Fig. 20), and 9. How these points are determined utilizing the

segmented objects '. will be described below. The shape descriptor is
1

given by the following quintuple:

SHAPE DESCRIPTOR 0 ROCK = ((x 2 , yz), (4x 6 , y 6 ),

(x 8 ', Y8 ) , Z9g)

We note that the first four elements prescribe the points that define the

rectangular cross section and the fifth the height of the parallelepiped. To

compute p 2 , p 4 ' p 6 , and p 8 it is first necessary to find the points pl, p3'

p 5 and P 7 . These are found by searching in the manner described below for

certain points wTE4 where rr has the coordinates (a, 0, y) in the picture

coordinate system and i refers to the name of the rock.

tLet T3 and rr7 be mapped into the points p 3 = (x 3 ' Y3 , z 3 ) and
t

P 7 = (x 7 ' Y7' z 7 ) in the global coordinate system. Then 13 and rr7 E I

are defined such that

JPL Technical Memorandum 33-645 13



a 3 a V Tr ET.
1

a < a V Tr E ).
7 1

This is shown in Fig. 21.

Whereas i 3 and 1T7 are determined solely by the information in the

a-y plane, pl and p 5 require depth information. Let T 1 and Tr5 E'i corre-

spond to p1 = (x, y, 1 )t and p 5 = (x 5' Y5 ,' z 5 )t , respectively. These

points are chosen so that they map into points in the global coordinate

system that represent the closest and farthest points on the rock with

respect to the baseline vector. We define these points such that

d > d V ir E .
1- 1

d 5d V wr E .
5 1

where d 1 and d 5 represent the retinal disparities for ir 1 and 7r5 ,
respectively.

The highest point z on the rock is determined by searching for ni9,

which maps into the point p 9 = (x 9 , Y9 , z 9 ) . Thus Tw9 is chosen such that

z 9 >z V TENi

If the height z 9 is below some threshold, the object may be ignored

in that the robot vehicle will be capable of driving over it without endanger-

ing its safety. Figure 22 shows a picture with a possible placement of the

five points.

5Parenthetically we note that in addition to the stereoscopic method described
in Ref. 1, the closest and farthest points on the rock may also be obtainable
by means of the laser range finder shown in Fig. 1. By viewing the point
of laser light in both the left and right images, the set ki can be searched
to determine the disparities dl and d 5 . The conceptual integration of this
system has not yet been accomplished.
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The points pl, p 3 ' P 5 , and p 7 are employed to compute p 2 , P4' p6'
and p 8 , which are the elements of the shape descriptor. Figure 20 shows

an MPERP and the relationship between the points. A line is drawn through

each of pl and p 5 parallel to the baseline vector A, while two others are

drawn through p 3 and p 7 perpendicular to the baseline. The resulting

rectangle is the MPERP. If the points are labelled as in Fig. 20, then it

can be shown using geometrical arguments that (xk, yk ), k = 2, 4, 6, 8 is

given by:

Xk-l + (Yk+l - Yk-)t - k+l
x k  (tZ - 1)

Yk+l t + (xk- -Xk+)t - Yk-

Yk =  (t - 1)

where if

0-<60 -  or i 3

2 2

then

t = tan 0 for p 2 and p 6

t = cot 0 for p4 and p 8

if

i 31- 0 < Tr or < 5 0
2 2

then

t = cot 6 for p2 and p 6

t = tan 0 for p4 and p 8
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The MPERP is an approximation, given the parts of the rock that are

visible, to the convex hull of the rock. A better approximation might be

obtained by having the robot move away from its original point of observation

and reanalyze the scene from a new spot. The MPERP obtained in this way

can be combined with any previous MPERPs for the same rock to determine

the MPEPC. Figure 23 shows the surface cross section of a rock in the x-y

plane with the MPERP evaluated at two different observation points. We

define the cross section of the MPEPC for a given rock as the union of the

cross sections of all the MPERPs found for that rock and represent it by a

list of points that can be joined to form a piecewise linear approximation to

the union. The height of the MPEPC is set equal to the maximum height

of all the MPERPs.

The above definitions are arbitrary but simple to implement. The

MPERP will probably be adequate for navigational purposes even though it

may be a poor approximation to the complete shape of the rock. In any

event, more information is clearly available that could be used to better

approximate the shape of the rock at the obvious expense of memory in the

world model. With respect to manipulation, the tilt angle c must be chosen

so that the MPERP cross section completely encloses the rock sample as

shown in Fig. 24. In this case the a-y picture plane is close to parallel to

the x-y plane and therefore the boundary of 'I,. in the picture plane may be1
considered to be a good approximation to the cross-sectional boundary of

the rock in the x-y plane. This boundary could be described more accurately

if desired by chain encoding techniques (Ref. 8). Suitable features for

manipulation, such as optimum gripping points, could then be calculated

using this more detailed description.

We now turn to the location descriptor. The result of the above

analysis for shape features is a space map, essentially a crude, three-

dimensional memory of space allocation in the scene. Let us reference

each MPERP in the scene and consequently in the space map by its center

of gravity g, which is easily obtained:

LOCATION DESCRIPTOR 0 ROCK = (CENTER OF GRAVITY)

16 JPL Technical Memorandum 33-645



COORDINATES 0 CENTER OF GRAVITY x4 + (x 8 - x 4  ' 8 ( 4

- y 8 )), i z9

Figure 25 depicts such a space map for the scene shown in Fig. 3.

The g for an MPEPC is found by averaging the g's of all the MPERPs that

constitute it.

Essentially we observe that the space map is referenced by means of

the location descriptor. For most cases, a particular object can be located

using a nearest neighbor classification procedure (Ref. 8). In this way, as

the robot traverses a path, obstacles that have been encountered previously

are easily pinpointed. A certain degree of forgetting is necessary as the

memory allocated for the space map will necessarily be limited. Possibly

some combination of short- and long-term memory is called for, but a

detailed discussion of this issue is beyond the scope of this report.

IV. DISCUSSION AND CONCLUSIONS

The problem environment considered above is an indoor laboratory

with uniformly painted walls, floor, and ceiling. Rocks varying in size from

a few centimeters to about 75 cm are to be placed in a random configuration

on the floor to act as both samples and obstacles. If the breadboard robot is

to inhabit such an area, it will be required to observe these scenes in a

dynamic fashion and build up an appropriate representation in terms of a

world model. In this report we have been concerned with this perceptual

component of the robot's cognitive machinery and have addressed ourselves

to the feasibility of its algorithmic implementation.

The scene analysis that accomplishes this task proceeds in three

sequential stages after the image has been digitized. The first stage is

concerned with object segmentation, the second with depth analysis, and the

third with feature extraction. The last ultimately results in a representation

in the world model of all the rocks in the scene. We emphasize that the

approach is exclusively bottom-up in nature and depends heavily on the

fact that the segmentation procedure outputs objects that are meaningful and

JPL Technical Memorandum 33-645 17



can be named by humans. Complete dependence is made on background

uniformity as a means of isolating the objects in the image.

The question arises of the degree of extensibility of this work to

scenes of the kind shown in Figs. 4, 5, and 6. The experience with scene

analysis in outdoor environments is extremely limited with only two

references cited in the literature (Refs. 10 and 11). Both of these

approaches are knowledge-based in that the semantics of the problem

domain are embodied in the world model and are employed extensively

during the scene analysis. The attribution of computer understanding of

meaning is primarily based on this process. The analysis is goal-directed

resulting in a complex combination of both bottom-up and top-down pro-

gramming. It is therefore not necessary for the initial segmentation to

yield objects that are nameable. In fact, one would be hard-pressed to

distinguish the segmentation procedure from the rest of the scene analysis.

This type of analysis may be likened to hypothesis generation and verifica-

tion followed by global analysis and reorientation until the ultimate goal of

representing the information in the scene is achieved.

We conclude that an approach that embodies these general principles

is necessary to cope with the natural environments shown in Figs. 4, 5,

and 6. Obviously the entities in these scenes are not as easily delineated

as those in Fig. 3, and the segmentation procedure described in Section II

would necessarily fail. A robot that will function on Mars will require an

understanding of its environment far in excess of that of the indoor bread-

board model.
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Fig. 1. The robot breadboard hardware
configuration showing the two identical
and aligned optical systems and scanners
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Fig. 6. An outdoor scene depicting the results of lava flow
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Fig. 7. Information flow for the process
of scene analysis
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AND
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ROCK

P2 P2 RELATIONSH IPS

Pi =CONSISTS OF

P2 = HAS THE PROPERTY OF
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Fig. 8. The model of assertions for
a typical indoor scene
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Fig. 9. The model of assertions for an outdoor scene
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Fig. 10. The local histogram for the

background information
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Fig. 11. Matched filters: (a) matched filter
for the interpolated estimate of uB;
(b) matched filter for obtaining the thresholds
T L and T R when a background peak is not

found by search
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Fig. 12. Special cases where the two-
sigma assumption does not hold
completely
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Fig. 17. A depth map for the sidewalk scene
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Fig. 18. Global and local coordinate systems
for the picture acquisition process by the so-
called retina
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Fig. 19. Gimbal references
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Fig. 20. Points in the global coordinate
system that define the MPERP
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1
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Fig. 22. A possible placement in
the picture coordinate system of the
five points used to construct the
MPERP
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